• A. LafayE. Peltola, and J. Roussillon. Fused Specht polynomials and c=1 degenerate conformal blocks. [arxiv.org/abs/2410.09798] 
  • A. KarrilaA. Lafay, E. Peltola, and J. Roussillon. Planar UST branches and c=-2 degenerate boundary correlations. [arxiv.org/abs/2410.09800]
  • O. Abuzaid, V. Olsiewski Healey, and E. Peltola. Large deviations of Dyson Brownian motion on the circle and multiradial SLE(0+). [arxiv.org/abs/2407.13762]
  • E. Peltola and A. Schreuder. Loewner traces driven by Lévy processes. [arxiv.org/abs/2407.06144]
  • Y. Feng, M. Liu, E. Peltola, and H. Wu. Multiple SLEs for κ∈(0,8): Coulomb gas integrals and pure partition functions[arxiv.org/abs/2406.06522]
  • R. L. Greenblatt and E. Peltola. On the spin interface distribution for non-integrable variants of the two-dimensional Ising model. [arxiv.org/abs/2404.12375]
  • S. Maibach and E. Peltola. From the conformal anomaly to the Virasoro algebra.  [arxiv.org/abs/2403.09628]
  • Y. Feng, E. Peltola, and H. Wu. Connection probabilities of multiple FK-Ising interfaces. [arxiv.org/abs/2205.08800] Probab. Theory Related Fields, 189(1-2): 281--367, 2024. [DOI]
  • M. Liu, E. Peltola, and H. Wu. Uniform spanning tree in topological polygons, partition functions for SLE(8), and correlations in c=−2 logarithmic CFT. [arxiv.org/abs/2108.04421] Ann. Probab, to appear.
  • S. M. Flores and E. Peltola. Higher-spin quantum and classical Schur-Weyl duality for sl_2. [arxiv.org/abs/2008.06038]
  • E. Peltola. and Y. Wang. Large deviations of multichordal SLE(0+), real rational functions, and zeta-regularized determinants of Laplacians. J. Eur. Math. Soc., 26(2): 469-535, 2024. [DOI][arxiv.org/abs/2006.08574]
  • E. Peltola. Towards a conformal field theory for Schramm-Loewner evolutions. J. Math. Phys. 60(10): 103305, 2019. (Special Collection: XIX:th ICMP). [DOI] [arxiv.org/abs/1910.05796]
  • S. M. Flores and E. Peltola. Generators, projectors, and the Jones-Wenzl algebra. [arxiv.org/abs/1811.12364]
  • E. Peltola and H. Wu. Crossing probabilities of multiple Ising interfaces. Ann. Appl. Probab. 33(4): 3169-3206, 2023. [DOI] [arxiv.org/abs/1808.09438]
  • S. M. Flores and E. Peltola. Standard modules, radicals, and the valenced Temperley-Lieb algebra. [arxiv.org/abs/1801.10003]
  • V. Beffara, E. Peltola, and H. Wu. On the uniqueness of global multiple SLEs. Ann. Probab., 49(1): 400-434, 2021. [DOI] [arxiv.org/abs/1801.07699]
  • A. Karrila, K. Kytölä, and E. Peltola. Conformal blocks, q-combinatorics, and quantum group symmetry. Ann. Inst. Henri Poincaré D. 6(3): 449-487, 2019. [DOI] [arxiv.org/abs/1709.00249]
  • E. Peltola and H. Wu. Global and local multiple SLEs for κ ≤ 4 and connection probabilities for level lines of GFF. Comm. Math. Phys. 366(2): 469-536, 2019. [DOI] [arxiv.org/abs/1703.00898]
  • A. Karrila, K. Kytölä, and E. Peltola. Boundary correlations in planar LERW and UST. Comm. Math. Phys. 376(3): 2065-2145, 2020. [DOI] [arxiv.org/abs/1702.03261]
  • E. Peltola. Basis for solutions of the Benoit & Saint-Aubin PDEs with particular asymptotic properties. Ann. Inst. Henri Poincaré D. 7(1): 1-73, 2020. [DOI] [arxiv.org/abs/1605.06053]
  • K. Kytölä and E. Peltola. Pure partition functions of multiple SLEs. Comm. Math. Phys. 346(1): 237-292, 2016. [DOI] [arxiv.org/abs/1506.02476]
  • K. Kytölä and E. Peltola. Conformally covariant boundary correlation functions with a quantum group. J. Eur. Math. Soc. 22(1): 55-118, 2020. [DOI] [arxiv.org/abs/1408.1384]

MFO Reports:

  • E. Peltola. Around the conformal anomaly. Oberwolfach Reports Volume 21 (2024).

Lecture Notes (graduate level):

  • E. Peltola. Interplay of Schramm-Loewner evolution curves with conformal field theory. Peking, 2023, and SRS 2024.
  • E. Peltola. Geometry of random conformally invariant curves. SISSA, 2022.

Lecture Notes (undergraduate level): 

  • L. Leskelä and E. Peltola. Stochastic processes. Aalto, 2023.
  • E. Peltola. Brownian motion, martingales, and stochastic analysis. Aalto, 2022.

PhD Thesis (Mathematics):

  • E. Peltola. Applications of quantum groups to conformally invariant random geometry. University of Helsinki, 2016.

Minor Thesis (Theoretical Physics): 

  • E. Peltola. Two-dimensional critical phenomena, interfaces, scaling limits, and Schramm-Loewner evolutions. University of Helsinki, 2016.

Master's Thesis (Mathematics):

  • E. Peltola. An explicit relation between monodromy of the Knizhnik-Zamolodchikov equations and braiding of quantum sl2. University of Helsinki, 2012.
© 2021 Eveliina Peltolan kotisivu. Kaikki oikeudet pidätetään.
Luotu Webnodella
Luo kotisivut ilmaiseksi! Tämä verkkosivu on luotu Webnodella. Luo oma verkkosivusi ilmaiseksi tänään! Aloita